Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 876
Filtrar
1.
J Asian Nat Prod Res ; : 1-12, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634612

RESUMO

We established myocardial injury models in vivo and in vitro to investigate the cardioprotective effect of gomisin D obtained from Schisandra chinensis. Gomisin D significantly inhibited isoproterenol-induced apoptosis and hypertrophy in H9C2 cells. Gomisin D decreased serum BNP, ANP, CK-MB, cTn-T levels and histopathological alterations, and inhibited myocardial hypertrophy in mice. In mechanisms research, gomisin D reversed ISO-induced accumulation of intracellular ROS and Ca2+. Gomisin D further improved mitochondrial energy metabolism disorders by regulating the TCA cycle. These results demonstrated that gomisin D had a significant effect on isoproterenol-induced myocardial injury by inhibiting oxidative stress, calcium overload and improving mitochondrial energy metabolism.

2.
Carbohydr Polym ; 332: 121909, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431413

RESUMO

COMT inhibitors are commonly used to improve the effectiveness of levodopa in treating Parkinson's disease by inhibiting its conversion to 3-O-methyldopa. Because of the serious side effect of nitrocatechol COMT inhibitors, it is necessary to develop non-nitrocatechol COMT inhibitors with a higher safety profile. Heparin has been observed to bind to COMT. However, the exact functional significance of this interaction is not fully understood. In this study, the contribution of different substitution of heparin to its binding with COMT was investigated. In vitro and in vivo, heparin oligosaccharides can bind to COMT and inhibit its activity. Furthermore, we enriched the functional heparin oligosaccharides that bind to COMT and identified the sequence UA2S-GlcN(S/Ac)6(S/H)-UA2S-GlcNS6(S/H)-UA2(S/H)-GlcNS6S as the characteristic structural domain of these functional oligosaccharides. This study has elucidated the relationship between the structure of heparin oligosaccharides and their activity against COMT, providing valuable insights for the development of non-nitrocatechol COMT inhibitors with improved safety and efficacy.


Assuntos
Catecol O-Metiltransferase , Doença de Parkinson , Humanos , Catecol O-Metiltransferase/metabolismo , Catecol O-Metiltransferase/uso terapêutico , Heparina/uso terapêutico , Inibidores de Catecol O-Metiltransferase/farmacologia , Inibidores de Catecol O-Metiltransferase/uso terapêutico , Levodopa , Doença de Parkinson/tratamento farmacológico
3.
J Neurosurg ; : 1-9, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518289

RESUMO

OBJECTIVE: The influence of socioeconomic factors on racial disparities among patients with sporadic meningiomas is well established, yet other potential causative factors warrant further exploration. The authors of this study aimed to determine whether there is significant variation in the genomic profile of meningiomas among patients of different races and ethnicities and its correlation with clinical outcomes. METHODS: The demographic, genomic, and clinical data of patients aged 18 years and older who had undergone surgery for sporadic meningioma between September 2008 and November 2021 were analyzed. Statistical analyses were performed to detect differences across all racial/ethnic groups, as were direct comparisons between Black and non-Black groups plus Hispanic and non-Hispanic groups. RESULTS: This study included 460 patients with intracranial meningioma. Hispanic patients were significantly younger at surgery (53.9 vs 60.2 years, p = 0.0006) and more likely to show symptoms. Black patients had a higher incidence of anterior skull base tumors (OR 3.2, 95% CI 1.7-6.3, p = 0.0008) and somatic hedgehog mutations (OR 5.3, 95% CI 1.6-16.6, p = 0.003). Hispanics were less likely to exhibit the aggressive genomic characteristic of chromosome 1p deletion (OR 0.28, 95% CI 0.07-1.2, p = 0.06) and displayed higher rates of TRAF7 somatic driver mutations (OR 2.96 95% CI 1.1-7.8, p = 0.036). Black patients had higher rates of recurrence (OR 2.6, 95% CI 1.3-5.2, p = 0.009) and shorter progression-free survival (PFS; HR 2.9, 95% CI 1.6-5.4, p = 0.002) despite extents of resection (EORs) similar to those of non-Black patients (p = 0.745). No significant differences in overall survival were observed among groups. CONCLUSIONS: Despite similar EORs, Black patients had worse clinical outcomes following meningioma resection, characterized by a higher prevalence of somatic hedgehog mutations, increased recurrence rates, and shorter PFS. Meanwhile, Hispanic patients had less aggressive meningiomas, a predisposition for TRAF7 mutations, and no difference in PFS. These findings could inform the care and treatment strategies for meningiomas, and they establish the foundation for future studies focusing on the genomic origins of these observed differences.

4.
World J Clin Cases ; 12(2): 314-321, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38313633

RESUMO

BACKGROUND: Despite sharing similar pathogenic factors, cancer and coronary heart disease (CHD) occur in comparable populations at similar ages and possess similar susceptibility factors. Consequently, it is increasingly commonplace for patients to experience the simultaneous occurrence of cancer and CHD, a trend that is steadily rising. AIM: To determine the impacts of continuing care on lung cancer patients with CHD following percutaneous coronary intervention (PCI). METHODS: There were 94 lung cancer patients with CHD following PCI who were randomly assigned to the intervention group (n = 38) and the control group (n = 41). In the intervention group, continuing care was provided, while in the control group, routine care was provided. An evaluation of cardiac and pulmonary function, medication compliance, a 6-min walk test, and patient quality of life was performed. RESULTS: Differences between the two groups were significant in left ventricular ejection fraction, 6-min walk test, oxygen uptake, quality of life and medication compliance (P < 0.05). In comparison with the control group, the enhancement in the intervention group was more significant. The intervention group had more patients with high medication compliance than the control group, with a statistically significant difference (P < 0.05). CONCLUSION: After undergoing PCI, lung patients with CHD could benefit from continued care in terms of cardiac and pulmonary function, medications compliance, and quality of life.

5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 1-5, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387891

RESUMO

OBJECTIVE: To analyze the immune reconstitution after BTKi treatment in patients with chronic lymphocytic leukemia (CLL). METHODS: The clinical and laboratorial data of 59 CLL patients admitted from January 2017 to March 2022 in Fujian Medical University Union Hospital were collected and analyzed retrospectively. RESULTS: The median age of 59 CLL patients was 60.5(36-78). After one year of BTKi treatment, the CLL clones (CD5 +/CD19 +) of 51 cases (86.4%) were significantly reduced, in which the number of cloned-B cells decreased significantly from (46±6.1)×109/L to (2.3±0.4)×109/L (P =0.0013). But there was no significant change in the number of non-cloned B cells (CD19 + minus CD5 +/CD19 +). After BTKi treatment, IgA increased significantly from (0.75±0.09)g/L to (1.31±0.1)g/L (P <0.001), while IgG and IgM decreased from (8.1±0.2)g/L and (0.52±0.6)g/L to (7.1±0.1)g/L and (0.47±0.1)g/L, respectively (P <0.001, P =0.002). BTKi treatment resulted in a significant change in T cell subpopulation of CLL patients, which manifested as both a decrease in total number of T cells from (2.1±0.1)×109/L to (1.6±0.4)×109/L and NK/T cells from (0.11±0.1)×109/L to (0.07±0.01)×109/L (P =0.042, P =0.038), both an increase in number of CD4 + cells from (0.15±6.1)×109/L to (0.19±0.4)×109/L and CD8 + cells from (0.27±0.01)×109/L to (0.41±0.08)×109/L (both P <0.001). BTKi treatment also up-regulated the expression of interleukin (IL)-2 while down-regulated IL-4 and interferon (IFN)-γ. However, the expression of IL-6, IL-10, and tumor necrosis factor (TNF)-α did not change significantly. BTKi treatment could also restored the diversity of TCR and BCR in CLL patients, especially obviously in those patients with complete remission (CR) than those with partial remission (PR). Before and after BTKi treatment, Shannon index of TCR in patients with CR was 0.02±0.008 and 0.14±0.001 (P <0.001), while in patients with PR was 0.01±0.03 and 0.05±0.02 (P >0.05), respectively. Shannon index of BCR in patients with CR was 0.19±0.003 and 0.33±0.15 (P <0.001), while in patients with PR was 0.15±0.009 and 0.23±0.18 (P <0.05), respectively. CONCLUSIONS: BTKi treatment can shrink the clone size in CLL patients, promote the expression of IgA, increase the number of functional T cells, and regulate the secretion of cytokines such as IL-2, IL-4, and IFN-γ. BTKi also promote the recovery of diversity of TCR and BCR. BTKi treatment contributes to the reconstitution of immune function in CLL patients.


Assuntos
Reconstituição Imune , Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Estudos Retrospectivos , Interleucina-4 , Fator de Necrose Tumoral alfa , Imunoglobulina A , Receptores de Antígenos de Linfócitos T
6.
Anal Chem ; 96(8): 3553-3560, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38362858

RESUMO

Lead halide perovskite nanocrystals with excellent photophysical properties are promising electrochemiluminescence (ECL) candidates, but their poor stability greatly restricts ECL applications. Herein, hydrogen-bonded cocrystal-encapsulated CsPbBr3 perovskite nanocrystals (PeNCs@NHS-M) were synthesized by using PeNCs as nuclei for inducing the crystallization of melamine (M) and N-hydroxysuccinimide (NHS). The as-synthesized composite exhibits multiplicative ECL efficiencies (up to 24-fold that of PeNCs) without exogenous coreactants and with excellent stability in the aqueous phase. The enhanced stability can be attributed to the well-designed heterostructure of the PeNCs@NHS-M composite, which benefits from both moiety passivation and protection of the peripheral cocrystal matrix. Moreover, the heterostructure with covalent linkage facilitates charge transfer between PeNCs and NHS-M cocrystals, realizing effective ECL emission. Meanwhile, the NHS and M components act as coreactants for PeNCs, shortening the electron-transport distance and resulting in a significant increase in the ECL signal. Furthermore, by taking advantage of the specific binding effect between NHS-M and uranyl (UO22+), an ECL system with both a low detection limit (1 nM) and high selectivity for monitoring UO22+ in mining wastewater is established. The presence of UO22+ disrupted the charge-transfer effect within PeNCs@NHS-M, weakening the ECL signals. This work provides an efficient design strategy for obtaining stable and efficient ECLs from perovskite nanocrystals, offering a new perspective for the discovery and application of perovskite-based ECL systems.

7.
Exp Hematol Oncol ; 13(1): 17, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365742

RESUMO

Patients with relapsed or refractory (R/R) acute myeloid leukemia (AML) often exhibit limited responses to traditional chemotherapy, resulting in poor prognosis. The combination of venetoclax (VEN) with hypomethylating agents has been established as the standard treatment for elderly or medically unfit AML patients unable to undergo intensive chemotherapy. Despite this, the availability of novel VEN-based therapies specifically tailored for those with R/R AML remains scarce. Here, we provide a comprehensive overview of the latest data presented at the 65th American Society of Hematology Annual Meeting, shedding light on the progress and efficacy of VEN-based therapies for R/R AML.

8.
Carbohydr Polym ; 330: 121834, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368111

RESUMO

Endothelial dysfunction induced by oxidative stress is an early predictor of atherosclerosis, which can cause various cardiovascular diseases. The glycocalyx layer on the endothelial cell surface acts as a barrier to maintain endothelial biological function, and it can be impaired by oxidative stress. However, the mechanism of glycocalyx damage during the development of atherosclerosis remains largely unclear. Herein, we established a novel strategy to address these issues from the glycomic perspective that has long been neglected. Using countercharged fluorescence protein staining and quantitative mass spectrometry, we found that heparan sulfate, a major component of the glycocalyx, was structurally altered by oxidative stress. Comparative proteomics and protein microarray analysis revealed several new heparan sulfate-binding proteins, among which alpha-2-Heremans-Schmid glycoprotein (AHSG) was identified as a critical protein. The molecular mechanism of AHSG with heparin was characterized through several methods. A heparan analog could relieve atherosclerosis by protecting heparan sulfate from degradation during oxidative stress and by reducing the accumulation of AHSG at lesion sites. In the present study, the molecular mechanism of anti-atherosclerotic effect of heparin through interaction with AHSG was revealed. These findings provide new insights into understanding of glycocalyx damage in atherosclerosis and lead to the development of corresponding therapeutics.


Assuntos
Aterosclerose , Glicocálix , Humanos , Heparitina Sulfato/metabolismo , Células Endoteliais/metabolismo , Aterosclerose/tratamento farmacológico , Heparina/farmacologia
9.
Inflammopharmacology ; 32(1): 849-861, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38227095

RESUMO

Ulcerative colitis (UC) is a relapsing inflammatory disease with a unique aetiology. The treatment of UC is challenging, and the current clinical therapeutics for colitis have limited efficacy. Thus, finding new and effective treatment options remains urgent. Baricitinib, an inhibitor of Janus kinase (JAK), has been clinically used to treat rheumatoid arthritis (RA). However, its potential effects on UC have not been fully elucidated. In this study, we aimed to explore the effects of baricitinib on UC and its underlying mechanism. Dextran sulphate sodium (DSS)-induced murine model of chronic colitis was used to investigate the intervention efficacy following oral administration of baricitinib. The levels of key cytokines, such as IL-6, IFN-γ and IL-17A, were determined. Moreover, western blotting for IκBα, p-IκBα, JAK2, p-JAK2, STAT3 and p-STAT3 protein expression was performed to investigate the associated signalling pathways. Our findings demonstrated that baricitinib can significantly relieve DSS-induced UC in mice. After baricitinib intervention, IL-6, IFN-γ and IL-17A levels were decreased both in vitro and in vivo. Moreover, the elevated expression levels of p-IκBα, p-JAK2, and p-STAT3 were significantly reduced after treatment. Collectively, these results suggest that baricitinib is a potential therapeutic agent for alleviation of DSS-induced colitis. This study provides a method for subsequent investigations on potential curative drugs development of the for colitis.


Assuntos
Azetidinas , Colite Ulcerativa , Colite , Purinas , Pirazóis , Sulfonamidas , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , NF-kappa B/metabolismo , Interleucina-17 , Inibidor de NF-kappaB alfa/uso terapêutico , Interleucina-6/metabolismo , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/tratamento farmacológico
10.
J Psychosom Res ; 177: 111586, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185037

RESUMO

OBJECTIVE: Reviews have shown that mindfulness-based interventions (MBIs) were effective in improving cardiovascular risk factors (CVRFs), but the results were contradictory. This umbrella review aimed to summarize and grade the existing reviews on CVRFs associated with MBIs. METHODS: The protocol of this umbrella review had been registered in PROSPERO (CRD42022356812). PubMed, Web of science, Embase, The Cochrane Library, Scopus, Medline, PsycINFO and CINAHL were searched from database inception to 20 July 2022. The quality of evidence was assessed through GRADE. RESULTS: Twenty-seven reviews with 14,923 participants were included. Overall, 45% of reviews had low heterogeneity (I2 < 25%). For the quality of evidence, 31% were rated very low, 42% were rated low, 17% were rated moderate and 10% were rated high. MBIs significantly improved systolic blood pressure [SMD -5.53 mmHg (95% CI -7.81, -3.25)], diastolic blood pressure [SMD -2.13 mmHg (95% CI -2.97, -1.30)], smoking [Cohen's d 0.42 (95% CI 0.20, 0.64)], glycosylated hemoglobin [MD 0.01 (95% CI -0.43, -0.07)], binge eating behavior [SMD -6.49 (95% CI -10.80, -2.18)], depression [SMD -0.72 (95% CI -1.23, -0.21)] and stress [SMD -0.67 (95% CI -1.00, -0.34)]. CONCLUSIONS: In conclusion, this umbrella review provided evidence for the role of MBIs in the improvement of CVRFs.


Assuntos
Fatores de Risco de Doenças Cardíacas , Atenção Plena , Humanos , Ansiedade/etiologia , Pressão Sanguínea , Depressão/etiologia , Atenção Plena/métodos , Revisões Sistemáticas como Assunto , Metanálise como Assunto
11.
J Med Virol ; 96(2): e29439, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38294104

RESUMO

Hepatitis B virus (HBV) infection is a serious global health problem. After the viruses infect the human body, the host can respond to the virus infection by coordinating various cellular responses, in which mitochondria play an important role. Evidence has shown that mitochondrial proteins are involved in host antiviral responses. In this study, we found that the overexpression of TIM22 and TIM29, the members of the inner membrane translocase TIM22 complex, significantly reduced the level of intracellular HBV DNA and RNA and secreted HBV surface antigens and E antigen. The effects of TIM22 and TIM29 on HBV replication and transcription is attributed to the reduction of core promoter activity mediated by the increased expression of SRSF1 which acts as a suppressor of HBV replication. This study provides new evidence for the critical role of mitochondria in the resistance of HBV infection and new targets for the development of treatment against HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Fatores de Processamento de Serina-Arginina , Humanos , Antígenos E da Hepatite B/genética , Antígenos E da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Fatores de Processamento de Serina-Arginina/metabolismo , Replicação Viral , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo
12.
J Alzheimers Dis ; 97(3): 1381-1392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250768

RESUMO

BACKGROUND: Mitochondrial dysfunction plays a vital role in the progression of vascular dementia (VaD). We hypothesized that transfer of exogenous mitochondria might be a beneficial strategy for VaD treatment. OBJECTIVE: The study was aimed to investigate the role of mitochondrial therapy in cognitive function of VaD. METHODS: The activity and integrity of isolated mitochondria were detected using MitoTracker and Janus Green B staining assays. After VaD mice were intravenously injected with exogenous mitochondria, Morris water maze and passive avoidance tests were used to detect cognitive function of VaD mice. Haematoxylin and eosin, Nissl, TUNEL, and Golgi staining assays were utilized to measure neuronal and synaptic injury in the hippocampus of VaD mice. Detection kits were performed to detect mitochondrial membrane potential (ΔΨ), SOD activity and the levels of ATP, ROS, and MDA in the brains of VaD mice. RESULTS: The results showed that isolated mitochondria were intact and active. Mitochondrial therapy could ameliorate cognitive performance of VaD mice. Additionally, mitochondrial administration could attenuate hippocampal neuronal and synaptic injury, improve mitochondrial ΔΨ, ATP level and SOD activity, and reduce ROS and MDA levels in the brains of VaD mice. CONCLUSIONS: The study reports profitable effect of mitochondrial therapy against cognitive impairment of VaD, making mitochondrial treatment become a promising therapeutic strategy for VaD.


Assuntos
Disfunção Cognitiva , Demência Vascular , Camundongos , Animais , Demência Vascular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cognição , Disfunção Cognitiva/metabolismo , Superóxido Dismutase/metabolismo , Mitocôndrias , Trifosfato de Adenosina/metabolismo , Aprendizagem em Labirinto/fisiologia , Hipocampo/metabolismo
13.
Small ; : e2310672, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229539

RESUMO

At present, poor stability and carrier transfer efficiency are the main problems that limit the development of perovskite-based photoelectric technologies. In this work, hydrogen-bonded cocrystal-coated perovskite composite (PeNCs@NHS-M) is easily obtained by inducing rapid crystallization of melamine (M) and N-hydroxysuccinimide (NHS) with PeNCs as the nuclei. The outer NHS-M cocrystal passivates the undercoordinated lead atoms by forming covalent bonds, thereby greatly reducing the trap density while maintaining good structure stability for perovskite nanocrystals. Moreover, benefiting from the interfacial covalent band linkage and long-range ordered structures of cocrystals, the charge transfer efficiency is effectively enhanced and PeNCs@NHS-M displays superior photoelectric performance. Based on the excellent photoelectric performance and abundant active sites of PeNCs@NHS-M, photocatalytic reduction of uranium is realized. PeNCs@NHS-M exhibits U(VI) reduction removal capability of up to 810.1 mg g-1 in the presence of light. The strategy of cocrystals trapping perovskite nanocrystals provides a simple synthesis method for composites and opens up a new idea for simultaneously improving the stability and photovoltaic performance of perovskite.

14.
ACS Appl Mater Interfaces ; 16(4): 5316-5325, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227431

RESUMO

Surface and interfacial engineering of nanomaterials is essential for improving dispersion stability in liquids. In this study, we report that oleic acid (OA)- and stearic acid (SA)-functionalized layered double hydroxide (LDH) nanosheets as lubricant additives can achieve high dispersion and reduce friction and wear. LDH is a typical layered structure, and OA and SA are long-chain organic molecules that are not only compatible with base oils but also act as friction-reducing agents. The OA and SA molecules were branched onto ZnMgAl LDH nanosheets using dehydration condensation between the exposed OH groups on the surface of LDH and the COOH groups on the OA and SA molecules. Compared with that of the pristine ZnMgAl LDH, the dispersion of OA-ZnMgAl LDH and SA-ZnMgAl LDH was significantly improved. The surface-modified LDH exhibited superior tribological properties and great stability due to the synergistic lubrication effect between OA, SA, and LDH. Even at an ultralow concentration (0.15 wt %), the coefficient of friction and wear volume were reduced by ∼65 and ∼99%, respectively, compared to those of the base oil. Due to the green and simple synthesis method and excellent tribological properties, surface-functionalized LDH has enormous possibilities for future industrial applications.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38284716

RESUMO

BACKGROUND: It has been proven that vasoactive intestinal peptide (VIP) was involved in the pathogenesis of prostate cancer. Cardin et al. found that by an alanine scan, the heparin-binding site on VIP was exactly the same sequence in VIP and its receptor. Therefore, heparin could competitively block the binding of VIP and its receptor. However, the structure-activity relationship between heparin and VIP has not been reported, especially in terms of the sequence and sulfation patterns of heparin oligosaccharides upon binding to VIP. OBJECTIVE: The binding process between heparin oligosaccharides and VIPA variety of experiments was designed to study the structure-activity relationship between heparin oligosaccharides and VIP. METHODS: Heparin was enzymatically digested and purified to produce heparin oligosaccharides, and the structures were characterized by NMR. The binding capacity between heparin oligosaccharides and VIP was analyzed by GMSA and ITC experiments. The binding between heparin oligosaccharides and VIP was simulated using a molecular docking program to show the complex. ELISA assay was used to investigate the effect of non-anticoagulant heparin oligosaccharides on the VIP-mediated cAMP/PKA signaling pathway in vitro. RESULTS: The results indicated that both the length and the sulfation pattern of heparin oligosaccharides affected its binding to VIP. VIP could induce the expression of cAMP at a higher level in PC3 cells, which could be regulated by the interaction of heparin oligosaccharides and VIP. CONCLUSION: The binding between heparin oligosaccharides and VIP could block the binding between VIP and its receptor on tumor cells. Downloading the regulation of the expression level of cAMP could possibly further affect the subsequent activation of PKA. These non-anticoagulant heparin oligosaccharides may block the VIP-mediated cAMP/PKA signaling pathway and thus exert their antitumor activity.

16.
Acta Pharmacol Sin ; 45(2): 248-267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37833536

RESUMO

There are few effective and safe neuroprotective agents for the treatment of ischemic stroke currently. Caffeic acid is a phenolic acid that widely exists in a number of plant species. Previous studies show that caffeic acid ameliorates brain injury in rats after cerebral ischemia/reperfusion. In this study we explored the protective mechanisms of caffeic acid against oxidative stress and ferroptosis in permanent cerebral ischemia. Ischemia stroke was induced on rats by permanent middle cerebral artery occlusion (pMCAO). Caffeic acid (0.4, 2, 10 mg·kg-1·d-1, i.g.) was administered to the rats for 3 consecutive days before or after the surgery. We showed that either pre-pMCAO or post-pMCAO administration of caffeic acid (2 mg·kg-1·d-1) effectively reduced the infarct volume and improved neurological outcome. The therapeutic time window could last to 2 h after pMCAO. We found that caffeic acid administration significantly reduced oxidative damage as well as neuroinflammation, and enhanced antioxidant capacity in pMCAO rat brain. We further demonstrated that caffeic acid down-regulated TFR1 and ACSL4, and up-regulated glutathione production through Nrf2 signaling pathway to resist ferroptosis in pMCAO rat brain and in oxygen glucose deprivation/reoxygenation (OGD/R)-treated SK-N-SH cells in vitro. Application of ML385, an Nrf2 inhibitor, blocked the neuroprotective effects of caffeic acid in both in vivo and in vitro models, evidenced by excessive accumulation of iron ions and inactivation of the ferroptosis defense system. In conclusion, caffeic acid inhibits oxidative stress-mediated neuronal death in pMCAO rat brain by regulating ferroptosis via Nrf2 signaling pathway. Caffeic acid might serve as a potential treatment to relieve brain injury after cerebral ischemia. Caffeic acid significantly attenuated cerebral ischemic injury and resisted ferroptosis both in vivo and in vitro. The regulation of Nrf2 by caffeic acid initiated the transcription of downstream target genes, which were shown to be anti-inflammatory, antioxidative and antiferroptotic. The effects of caffeic acid on neuroinflammation and ferroptosis in cerebral ischemia were explored in a primary microglia-neuron coculture system. Caffeic acid played a role in reducing neuroinflammation and resisting ferroptosis through the Nrf2 signaling pathway, which further suggested that caffeic acid might be a potential therapeutic method for alleviating brain injury after cerebral ischemia.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Ácidos Cafeicos , Ferroptose , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Lesões Encefálicas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Antioxidantes/farmacologia , Traumatismo por Reperfusão/metabolismo
18.
Int J Biol Macromol ; 259(Pt 1): 129032, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159696

RESUMO

Heparin, a bio-molecule with the highest negative charge density, is pharmaceutically important to prevent SARS-CoV-2 infection due to its strong competitive binding to spike protein compared with cellular heparan sulfate, which was confirmed as a co-receptor for virus-host cell interaction. Hence, the refined structural characterization of heparin targeting viral protein-HS interaction was significant for developing antiviral pharmaceuticals. In our study, heparin oligomers (dp ≥ 4) were prepared using heparinase I. The affinity oligosaccharides binding to Omicron spike protein RBD were separated by affinity chromatography and size exclusion chromatography. HILIC-ESI-FTMS was used for chain mapping analysis. The basic building blocks were analyzed and the binding domain sequence was produced by Seq-GAG software and further measured by SAX chromatography. As results, heparin octasaccharide was found with significantly higher binding ability than hexasaccharide and tetrasaccharide, and the octasaccharide [ΔUA-GlcNS6S-GlcA-GlcNS6S-IdoA2S-GlcNS6S-IdoA2S-GlcNS6S] with 12 sulfate groups showed high binding to RBD. The mechanism of this structurally well-defined octasaccharide binding to RBD was further investigated by molecular docking. The affinity energy of optimal pose was -6.8 kcal/mol and the basic amino acid residues in RBD sequence (Arg403, Arg452, Arg493 and His505) were identified as the major contribution factor to interacting with sulfate/carboxyl groups on saccharide chain. Our study demonstrated that heparin oligosaccharide with well-defined structure could be potentially developed as anti-SARS-CoV-2 drugs.


Assuntos
COVID-19 , Heparina , Humanos , Heparina/química , SARS-CoV-2/metabolismo , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus/química , Oligossacarídeos/química , Sulfatos , Ligação Proteica
19.
Mol Neurobiol ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38087171

RESUMO

Enhancement of oxidative stress and resultant neuronal injury play important roles in initiating cognitive impairment during the aging process. Thus, attenuating oxidative injury is regarded as a profitable therapeutic strategy for age-associated cognitive impairment. Previous studies showed that gliclazide (Gli) had a protective role in neuronal injury from cerebral ischemia/reperfusion (I/R) injury. However, whether Gli has a profitable effect on age-associated cognitive impairment remains largely unclear. The present study showed that Gli held the potential to attenuate neuronal apoptosis in D-gal-induced senescent cells and aging mice. Additionally, Gli could alleviate synaptic injury and cognitive function in D-gal-induced aging mice. Further study showed that Gli could attenuate oxidative stress in D-gal-induced senescent cells and aging mice. The p38 MAPK pathway was predicted as the downstream target of Gli retarding oxidative stress using in silico analysis. Further studies revealed that Gli attenuated D-gal-induced phosphorylation of p38 and facilitated Nrf2 nuclear expression, indicating that the anti-oxidative property of Gli may be associated with the p38 MAPK pathway. The study demonstrates that Gli has a beneficial effect on ameliorating D-gal-induced neuronal injury and cognitive impairment, making this compound a promising agent for the prevention and treatment of age-associated cognitive impairment.

20.
Sci Rep ; 13(1): 22942, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135704

RESUMO

Gliomas with CDKN2A mutations are known to have worse prognosis but imaging features of these gliomas are unknown. Our goal is to identify CDKN2A specific qualitative imaging biomarkers in glioblastomas using a new informatics workflow that enables rapid analysis of qualitative imaging features with Visually AcceSAble Rembrandtr Images (VASARI) for large datasets in PACS. Sixty nine patients undergoing GBM resection with CDKN2A status determined by whole-exome sequencing were included. GBMs on magnetic resonance images were automatically 3D segmented using deep learning algorithms incorporated within PACS. VASARI features were assessed using FHIR forms integrated within PACS. GBMs without CDKN2A alterations were significantly larger (64 vs. 30%, p = 0.007) compared to tumors with homozygous deletion (HOMDEL) and heterozygous loss (HETLOSS). Lesions larger than 8 cm were four times more likely to have no CDKN2A alteration (OR: 4.3; 95% CI 1.5-12.1; p < 0.001). We developed a novel integrated PACS informatics platform for the assessment of GBM molecular subtypes and show that tumors with HOMDEL are more likely to have radiographic evidence of pial invasion and less likely to have deep white matter invasion or subependymal invasion. These imaging features may allow noninvasive identification of CDKN2A allele status.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Homozigoto , Deleção de Sequência , Glioma/patologia , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Informática , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...